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THE INVERSION OF A SPHERICAL COMPRESSION WAVE IN FLUID* 

V.N. LIKHACHEV 

The spherically symmetric motion of fluid under the action of a spherical piston is 
considered. The method of merging asymptotic expansions in a small parameter which 
defines the low compressibility of fluid is used. The inversion of a compression 
wave is investigated. The point of inversion is determined and the asymptotics of 
solution in its neighborhood, which replaces the initial condition for shock wave 
construction, is obtained. 

1. Statement of the problem. In the case of spherical symmetry the equations of mo- 
tion and continuity, and those of Tait are of the form 

(1.1) 

(1.2) 

where For d, are the fluid density and the speed of sound in the unperturbed medium. 
We introduce the small parameter E = &/(&,*~,,) using some characteristic pressure PO and 

taking into account the low compressibility of fluid in the consideredpressurerange,weobtain 
for parameter p the formulap = pO(l -j- ep) which, except for the constant, coincides with the 
dimensionless pressure. 

Expanding the (expression for) pressure in (1.2) in series in small pressure variations, 
we obtain -- 

$2=++@, k=n--l 

In the dimensionless variables 

the system (1.1) assumes the form 

!.E++_ -&$ (1 -I- “44 

e$+eug+(l+ep)($++O 

(1.3) 

The usual kinematic condition apply at the piston x = m(t), and the initial conditions 
are homogeneous. 

2. Construction of solution for t - 1. The problem formulated above is solved by 
the method of merging asymptotic expansions in e /1,2/. Two zones are considered, viz. the 
external zone (subscript e) adjacent to the piston and the internal one (subscript i) adjacent 
to the leading perturbation front. Several expansion terms were obtained earlier for (inter- 
vals of) times of order unity, with continuous initial conditions that correspond to zero 
initial velocity of the piston. 

In the external and internal zones the scales of variables, and the expansions areofthe 
form 

u = IF, = u,~+ v/E&, + Eu,~ + E’~I,, --I- . . . (2.1) 

p = pp = pea + f/ep,, + ep,g + &‘$,,t -f . . . , 5, = I, t, = t 
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(2.2) 

The first two terms external and two terms internal expansions were obtained in /2/ for 
k=O. Below we set Zi = 0 which does not affect the principal expansion term. Merging (2.1) 

and (2.2) we obtain subsequent expansion terms. Omitting cumbersome operations, we present the 
final solutions for the external expansion 

for the internal expansion 

~=_l/;~+~+E(J/R~t_~)+E./:(_-_ 

s + -!!&+ ~~,l,,(z,~F) -: 

(2.3) 

Conditions C' (0) = 0, C" (0) 7 0, C"'(0) = 0 which follow from the requirement for the homo- 

geneity of boundary condition at the leading characteristic were used in their derivation. 

The inversion of a compression wave is due to nonlinear terms. The third term of expans- 

ion (2.3) for the internal zone, where the inversion takes place, is obtainedfromthenonlinear 

system (the two preceding ones are derived from the linear system). It is that termwhich shows 

,the inhomogeneity of expansion (2.3) at exponentially large f owing to the presence of logari- 
thmic terms. This indicates that at such distances the solution is of another form. 

3. Construction of solutions for considerable time intervals. We seek a solu- 
tion that is valid at the point of inversion, as well as after the shock wave formation. Note 

that at the leading perturbation front, be it a characteristic or a shock wave, the condition 
U, = l/Fps is satisfied and is correct to exponentially small terms proportional to u,',(),,~. This 

is related to the exponentially small values of U, and ps at exponentially large distances, as 
will be seen from the solution obtained below. 

Since the internal expansion , with which merging is taking place , was carried out for I N 1 
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which corresponds to E - 1, h_ence the solution for distant regions is derived for 5 - 1. Thus 
in that zone we have t=xl/e which is correct to exponentially small terms. 

When E-1, expansion (2.3) yields for exponentially large distances the asymptotics 

u=pI/r=s-"[~/eC'(e)+e'lQ'(I)+ e*C'(E)C"(QIn (2xI/~))f~*F(5)/2+...] (3.1) 

since terms with powers of l/x higher than the first are exponentially small in comparison 
with any of the terms in (3.1). Physically the condition 

u=pr/E (3.2) 

is the consequence of the smallness of curvature of the spherical perturbation front at large 
distances. In the case of plane symmetry formula (3.2) is satisfied by the principal terms 
of expansion /2/. 

To obtain the sought solution we pass in system (1.3) to coordinates x, E=---s)/E+t 
and obtain for the principal expansion term the system 

(3.3) 

(3.4) 

The principal expansion term is defined in the considered reqion by the equation 

Z&l/e+0 

which, with allowance for conditions at the leading perturbation front come to relation (3.2) 
and the equation obtained by subtracting (3.3) from (3.4) reduce to condition (3.2). Taking 
into account (3.2) this equation assumes the form 

(3.5) 

The relatively exponentially small term &~u/~z is disregarded. 
One of the exact solutions of that equation which contains the arbitrary function G is 

of the form 
us = G (o), 0 = E + UXE Ins (3.6) 

If, however, the expansion is in E, we have 

ux = G (5) + EG’ (E)G (f) In I (3.7) 

Expansion (3.7) is unsuitable in the case of exponentially large z, and the second term 
in w is then of the same order as the first. 

Thus the principal expansion term in the case of considerable time intervalsisobtained, 
when the nonlinear term is retained in Eq.(3.5). However, it is possible, using (3.6), to 
show that the order of that term is comparatively small everywhere , including the regionwhere 
it must be taken into account. This is the essence of the cumulative effect of the inversion 
of a spherical compression wave in fluid. 

Solution (3.69 evidently becomes expansion (2.2) from which asymptotics (3.1) are obtain- 
ed when G (U = V/EC' (9. 

Let us derive subsequent terms of expansion for the distant region. If that expansionis 
in powers of E (and perhaps of lne), system (3.31, (3.4) will show that relation (3.2) is 
satisfied by all approximations. This means that subsequent expansion terms are also satis- 
fied by Eq.(3.5) and condition (3.2). Expanding the arbitrary function Gin series,weobtain 

G =aoGo + CQG, + . . ., at = ai (E), Gi = Gt (0) (3.8) 
us = pf/, = @ova+ &Ul + . . ., Pi = Bi (8) 

where ui is related to Gj by formula (3.6). 
Merging (3.8) with (3.1) we obtain for the distant zone an expansion of the form 

whose solution structure is such that for obtaining u(z,t) it is necessary to solve it for u 
appearing in w. A feature of the derived solution is that its order is lower than that of 
any asymptotic functions of ai used in the expansion. 

4. The inversion of a compression wave. The position of a shock wave is defined 
by the equation 
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d=, --&=-&+; (4.1) 

In variables y = In&u = ux,fO = E/e along the characteristics of Eq.(3.5) v = const , 
and they are of the form 

5cl = -vy + F 04 (4.2) 

When F’(V) = y, the characteristics intersect and a shock wave is formed. 

Since we aim at obtaining a solution in the neighborhood of the point of inversion where 

V is low, we expand Fat the instant when the shock wave is formed at the leading character- 

istic. We obtain 

50 = -vy + k,v + k,IP (4.3) 

If only linear terms with respect to v are taken into account in (4.31, the solution as- 

sumes the form 

u = Ss 1 (k, - Y) (4.4) 

and retention of the linear term yields 

v = {y - k, f [(y - k,)’ + 4k,Eol’i2} / (2k,) (4.5) 

Formulas (4.4) and (4.5) show that inversion occurs when y =/cl, i.e. when k, > 0. 
In new variables Eq.(4.1) assumes the form 

d&,ldy = -v/2 (4.6) 

The case of intersection of characteristics at the single point that represents their 

degenerate envelope, corresponds to solution (4.4). In Eq.(4.6) point (5, = 0, v = 0) is then 

a node, hence the integral curve cannot be uniquely selected. Moreover, when y=k, solution 

(4.4) generally does not exist at all times. This clearly shows that function F(v) mustneces- 

sarily be nonlinear and that it is necessary to use solu- 

tion (4.5). 

50 

k 

Depending on the sign of k,, solution (4.3) substan- 

tially varies in the neighborhood of the pointofinversion. 

Y 
When k,<O, the envelope of characteristics begins in the 

initial inversion does not occur at the 

",M" 
5 

zone EO)- 0, i.e. 

leading characteristic_The characteristics and their 

envelope y = I;, + 1/-J&E;, (shown by the dash line) in the 
/ C' &J,V plane are plotted in Fig.1 for k, > 0. 

Let us consider the case of k,) 0 and explain the 

Fig.1 relation between solutions (4.4) and (4.5). 

For solution (4.5) to be formally transformed to (4.4), 

when k,Eo i (y - kJ2 < 1, it is necessary to use the plus sign in (4.5) for y< k, andtheminus 

sign for y> 1~~. However the stipulation of uniqueness of solution allows the characteristics 

to extend only up to the tangency point on the envelope (to zone ABC, Fig-l). Analytically 

this means that for y> k, formula (4.5) must be taken with the plus sign. 

It has, thus, been proved that the linearization of function P(C) provides an asymptot- 

ically correct result only up to the point of inversion, beyond which it is necessarytotake 

into account the nonlinearity of function F. This can also be explained by the geometry of 

behavior of characteristics. 

Using (4.3) it is possible to reduce Eq.(4.4) to the form 

which shows that the inversion point (& = O,v* = 0) is a saddle when Eq.(4.7) is expressed in 
variables En, uz. The only suitable integral curve is 

v, == (-35,, i k,)+ (4.8) 

In the neighborhood of the inversion point from (4.8) and (4.6) for the dependenceofthe 

shock on xs we obtain 
:< ln.z- k, 

u,=p,~/c=-i; 
--lx-- 

(4.9) 
2 s 

Let us determine coefficients k, and k,. Since we aim at the determination of the first 

two terms of (2.2), it is sufficient to stipulate only the fulfillment of conditons c (0) _ 

C' (0) = C"' (0) = 0 . Hence for small time intervals 



The inversion of a wave in fluid 179 

‘p(t) = zo + y3tS / 3! + ysP / 5! + yet6 / 6! + . . . 

which shows that F(u) = G-l(u)/ E, where G-l is the inverse of function G. Hence the linear- 
ization of r:(u) is equivalent to the linearization of C'(o). When v is small,let us determine 
the inverse function of G. Using (3.9) we obtain 

k, = E-~/- / (y3z02), k, = -(34y,’ + yczo) / (4~9’33) 

Obviously It,> 0 corresponds to y3> 0, i.e. to a compression wave. The caseof k?> 0 

(or y0 < -34ys2 / 5”) corresponds to a weakened compression wave due to the respective of cp 
with respect to t (as compared with those ye at which discontinuity occurs earlier and not 
on the leading characteristic). At the inversion point we obtain the expression csp II/ 
(Esi2~&*)l. 

To determine the shock wave behavior outside the neighborhood of the inversion point it 
is necessary to solve Eq.(4.6) in which v(Eo,Y) is obtained from (4.2), and to substitute 
asymptotics (4.9) for the initial condition. 

The constructed solution can be obtained using the method proposed in /3/. 
With certain constraints on the law of piston motion at large distances from the inver- 

sion point the transformation to asymptotics first proposed by Landau is realized. 
The equation which enables us to obtain the above asymptotics is of the form 

du,,:dy, = 0.5~~ {[WC” (C’-1 (~,/)/ij)I-~ - yJ)-l (4.10) 

where C" is obtained from the respective argument, and C'-' is the inverse function of C'. 
In the wide class of problems with large y, the expression in brackets in (4.10) can be neg- 
lected as small in comparison with y,. The Landau asymptotics is then valid. 

The author thanks A.L. Gonor for a number of remarks on this paper. 
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